第203章 绝对值之妙理

文曲在古 戴建文 1439 字 2个月前

众学子分组探讨,各抒己见。

一组代表起身言曰:“先生,亦当分段讨论。若 x 小于等于 -3 ,则 1 - 2x + x + 3 = 2 ,解得 x = 2 ,不合条件;若 x 大于 -3 且小于 1 / 2 ,则 1 - 2x - x - 3 = 2 ,解得 x = -4 / 3 ;若 x 大于等于 1 / 2 ,则 2x - 1 - x - 3 = 2 ,解得 x = 6 。”

戴浩文点头曰:“不错。此类题需细心思量,莫漏解也。”

又出一题:“若关于 x 之方程 | 3x - 5 | = m 有解,求 m 之取值范围。”

一学子应曰:“先生,因绝对值非负,故 m 大于等于零方程有解。”

戴浩文曰:“然也。再思此题,若关于 x 之不等式 | 2x + 1 | > a 恒成立,求 a 之范围。”

一生答曰:“先生,因 | 2x + 1 | 最小值为零,故 a 小于零不等式恒成立。”

戴浩文笑曰:“妙哉!汝等悟性颇高。”

如此数日,戴浩文以种种实例,令学子们对绝对值之概念与应用愈发精通。

或有一题:“已知 | x - 1 | + | y + 2 | = 0 ,且 2x + 3y + z = 10 ,求 z 之值。”

众学子深思熟虑,终得答案。

戴浩文一一评点,使众人皆有所获。

又有:“若 | x - 2 | + | 2x - 1 | = 5 ,求 x 之值。”

学子们争论不休,各执一词,最终在戴浩文的引导下,得出正解。

光阴似箭,学子们于绝对值之研学中渐入佳境。

一日,戴浩文考校学子,见众人应答如流,心甚慰之。

曰:“汝等学业有成,然不可骄矜,数学之道,广袤无垠,当持之以恒,上下求索。”

众学子躬身行礼,谨遵师训。

自此,学子们怀绝对值之理,续探数学之奥秘。